Exercice 1

Considérez le diagramme bloc du PLL : Déterminez le type de signaux qui seraient observés aux points A et B pour les conditions d'entrée suivantes :

- Détecteur de phase

 VoltageControlled
 Oscillator
- i) Entrée = tension sinusoïdale, fréquence stable
- ii) Entrée = onde sinusoïdale, fréquence croissante
- iii) Entrée = onde sinusoïdale, fréquence décroissante
- iv) Entrée = onde sinusoïdale, fréquence augmentant et diminuant régulièrement

Exercice 2

Déterminez le changement de fréquence pour un oscillateur contrôlé en tension (VCO) avec une fonction de transfert de Ko = 2.5 **KHz/V** et un changement de tension d'entrée DC de ΔV_0 = 0.8 V.

Exercice 3

Etant donnée pour un VCO : $f_{OUT} = 1.2$ MHz à $V_0 = 4.5$ V et $f_{OUT} = 380$ kHz à $V_0 = 1.6$ V, trouvez Ko en rad/Vs.

Exercice 4

Calculez la tension à la sortie d'un détecteur de phase avec un gain $K_D = 0.5 \text{ V/rad}$ et une erreur de phase de $\Phi e = 0.75 \text{ rad}$.

Exercice 5

Pour une PLL avec une fréquence libre f_0 =200kHz, une fréquence d'entrée f_{IN} =210kHz, et les fonctions de transfert : K_D =0.2V/rad, K_f =1 (fonction de transfert du filtre passe-bas), Ko=20 kHz/V, déterminez :

- a) Le gain de boucle ouverte exprimé en Hz/rad
- b) Le changement de la fréquence du VCO, Δf_{OUT}, nécessaire pour obtenir le verrouillage
- c) La tension de sortie de la PLL
- d) La tension de sortie du détecteur de phase
- e) L'erreur de phase statique (PLL verrouillée)
- f) La plage de maintien ('lock range'), exprimée en fréquence et en pulsation